题目内容
观察下列等式:| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
将以上三个等式两边分别相加得:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)猜想并写出:
| 1 |
| n(n+1) |
(2)直接写出下列各式的计算结果:
①
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2009×2010 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
(3)探究并计算:
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2008×2010 |
分析:根据题中所给的等式,找出规律,进而进行推广.得出问题答案.
解答:解:(1)根据:
=1-
;
=
-
;
=
-
,
可知:
=
-
;
(2)①
+
+…+
,
=1-
+
-
+…+
-
=
,
②进而推广:
+
+
+…+
,
=1-
+
-
+…+
-
,
=1-
=
;
(3)
+
+
+…+
,
=
(
-
)+
(
-
)+…+
(
-
),
=
(
-
),
=
.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
可知:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| (n+1) |
(2)①
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2009×2010 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 2009 |
| 2010 |
②进而推广:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
(3)
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2008×2010 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 2008 |
| 1 |
| 2010 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2010 |
=
| 251 |
| 1005 |
点评:本题考查了有理数的混合运算,主要是从题中找到规律,然后根据规律求解.
练习册系列答案
相关题目