题目内容

观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

将以上三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并写出:
1
n(n+1)
=
 

(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+…+
1
2009×2010
=
 
; ②
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 

(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2008×2010
=
 
分析:根据题中所给的等式,找出规律,进而进行推广.得出问题答案.
解答:解:(1)根据:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

可知:
1
n(n+1)
=
1
n
-
1
(n+1)


(2)①
1
1×2
+
1
2×3
+…+
1
2009×2010

=1-
1
2
+
1
2
-
1
3
+…+
1
2009
-
1
2010
=
2009
2010

②进而推广:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1


(3)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2008×2010

=
1
2
1
2
-
1
4
)+
1
2
1
4
-
1
6
)+…+
1
2
1
2008
-
1
2010
),
=
1
2
1
2
-
1
2010
),
=
251
1005
点评:本题考查了有理数的混合运算,主要是从题中找到规律,然后根据规律求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网