题目内容
如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.
![]()
解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
∵在△BCP和△DCP中,
,
∴△BCP≌△DCP(SAS)。 4分
(2)证明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP。
∵PE=PB,∴∠CBP=∠E。∴∠DPE=∠DCE。
∵∠1=∠2(对顶角相等),
∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,
即∠DPE=
∠DCE。
∵AB∥CD,
∴∠DCE=∠ABC。
∴∠DPE=∠ABC。
(3)58°
练习册系列答案
相关题目