题目内容
如图,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
A.15° B.25° C.30° D.10°
(本小题满分10分) 如图,正方形ABCD的对角线AC,BD交于点O,将一三角尺的直角顶点放在点O处,让其绕点O旋转,三角尺的直角边与正方形ABCD的两边交于点E和F。通过观察或测量OE,OF的长度,你发现了什么?试说明理由。
古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A.36 = 15+21 B.49 = 18+31
C.25 = 9+16 D.13 = 3+10
如图,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=__________.
如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )
A.4cm B.6cm C.8cm D.9cm
(10分)如图(1),已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.
(1)试说明OE=OF;
(2)如图(2),若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出说明理由;如果不成立,请说明理由.
(8分)先化简,再求值:其中x=
下列式子中,属于最简二次根式的是( )
A. B. C. D.
当时,代数式的值为 .