题目内容
设A(﹣2, ),B(1, ),C(2, )是抛物线上的三点,则, , 的大小关系为( )
A. B. C. D.
某校有A、B两个阅览室,甲、乙、丙三名学生各自随机选择其中的一个阅览室阅读.
(1)下列事件中,是必然事件的为( )
A.甲、乙同学都在A阅览室 B.甲、乙、丙同学中至少两人在A阅览室
C.甲、乙同学在同一阅览室 D.甲、乙、丙同学中至少两人在同一阅览室
(2)用画树状图的方法求甲、乙、丙三名学生在同一阅览室阅读的概率.
已知代数式x+2y的值是3,则代数式2x+4y+1的值是( )
A. 1 B. 7 C. 4 D. 不能确定
在平面直角坐标系中,抛物线经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线平行于x轴,当图象G在直线上方的部分对应的函数y随x增大而增大时,x的取值范围是___.
据有关实验测定,当气温处于人体正常体温(37°C)的黄金比值时,人体感到最舒适.这个气温约为_______°C (精确到1°C)
如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?
(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为: .
(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.
想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.
请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).
李老师在黑板上写了一道题目,计算: .小宇做得最快,立刻拿给李老师看,李老师看完摇了摇头,让小宇回去认真检查.请你仔细阅读小宇的计算过程,帮助小宇改正错误.
=----(A)
= ----(B)
= ---(C)
= ---(D)
(1) 上述计算过程中,哪一步开始出现错误? ;(用字母表示)
(2) 从(B)到(C)是否正确? ;若不正确,错误的原因是 ;
(3) 请你写出此题完整正确的解答过程.
在下列事件中,是必然事件的是( )
A. 买一张电影票,座位号一定是偶数 B. 随时打开电视机,正在播新闻
C. 通常情况下,抛出的篮球会下落 D. 阴天就一定会下雨
如图,已知是⊙的直径, 切⊙于点,点是弧的中点,则下列结论:①∥;②;③;④.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个