题目内容

16.如图,在?ABCD中,E、F为对角线BD上的两点,且AE⊥BD,CF⊥BD.求证:BE=DF.

分析 由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,即可证得∠ABE=∠CDF,则可证得△ABE≌△CDF,继而证得结论.

解答 证明:∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
在?ABCD中,AB∥CD,AB=CD,
∴∠ABE=∠CDF,
在△ABE和△CDF中,
$\left\{\begin{array}{l}{∠AEB=∠CFD}\\{∠ABE=∠CDF}\\{AB=CD}\end{array}\right.$,
∴△ABE≌△CDF(AAS),
∴BE=DF.

点评 此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网