题目内容
(本题满分8分)水池中有水,水面是一个边长为10尺的正方形,水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度和这根芦苇的长度分别是多少?
已知变量s与t的关系式是,则当时, .
如图(1),在△OAB中,∠OAB=900,∠AOB=300,OB=8,以OB为边,在△OAB外作等边三角
形OBC,D是OB的中点,连接AD并延长交OC于E.
求证:四边形ABCE是平行四边形;
如图(2),将图(1)中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的
长。
下列图形中,既是轴对称图形又是中心对称图形的有( )
A.4个 B.3个 C.2个 D.1个
两个直角三角形全等的条件是( )
A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条边对应相等
如图,四边形ABCD中,∠ABE=90°,AB∥CD,AB=BC=6,点E为BC边上一点,且∠EAD=45°,ED=5,则△ADE的面积为 .
矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为( )
A、 B、5 C、6 D、
如果a是4的平方根,b是27的立方根,则a+b=
(本题8分)如图,抛物线与x轴交于A、B点,与y轴交于C点,,顶点为
D,其中点A、C的坐标分别是(-1,0)、(0,3).
(1)求抛物线的表达式与顶点D的坐标;
(2)连结BD,过点O作OE⊥BD于点E,求OE的长.