题目内容
已知
,
,求x2+y2+z2-xy-yz-xz的值.
解:∵
,
,
∴x-z=
,
x2+y2+z2-xy-yz-xz
=
×(2x2+2y2+2z2-2xy-2yz-2xz)
=
×[(x-y)2+(y-z)2+(x-z)2]
=
×[(
)2+(
)2+(
)2]
=
×[1+
+1-
+3]
=
×5
=2.5.
分析:由
,
,易得x-z=
,然后把x2+y2+z2+xy-yz+xz进行变形得到x2+y2+z2-xy-yz-xz=
(2x2+2y2+2z2-2xy-2yz-2xz),根据完全平方公式有原式=
[(x-y)2+(y-z)2+(x-z)2],再代值计算即可.
点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.
∴x-z=
x2+y2+z2-xy-yz-xz
=
=
=
=
=
=2.5.
分析:由
点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.
练习册系列答案
相关题目