题目内容
7.| A. | 45 | B. | 50 | C. | 60 | D. | 75 |
分析 由于AD是△ABC的中线,那么△ABD和△ACD的面积相等,又BE是△ABD的中线,由此得到△ABE和△DBE的面积相等,而△ABE的面积为15,由此即可求出△ABD的面积,可得结果.
解答 解:∵AD是△ABC的中线,
S△ABD=S△ACD=$\frac{1}{2}$S△ABC,
∵BE是△ABD的中线,
∴S△ABE=S△DBE=$\frac{1}{2}$S△ABD=15,
∴S△ABD=30,
∴S△ABC=60,
故选C.
点评 此题主要考查了中线能把三角形的面积平分,利用这个结论求出三角形的面积是解答此题的关键.
练习册系列答案
相关题目
8.
小明同学参加周末社会实践活动,到“富平花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:
32 39 45 55 60 54 60 28 56 41
51 36 44 46 40 53 37 47 45 46
(1)上面所用的调查方法是抽样调查.
(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图
(3)通过频数分布直方图试分析此大棚中西红柿的长势.
32 39 45 55 60 54 60 28 56 41
51 36 44 46 40 53 37 47 45 46
(1)上面所用的调查方法是抽样调查.
(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图
| 个数分组 | 28≤x<36 | 36≤x<44 | 44≤x<52 | 52≤x<60 | 60≤x<68 |
| 频数 | 2 | 5 | 7 | 4 | 2 |
12.
某班要从甲、乙两名同学中选拔出一人,代表班级参加学校的一分钟踢毽子体能素质比赛,在一段时间内的相同条件下,甲、乙两人进行了六场一分钟踢毽子的选拔测试,根据他们的成绩绘制出如图的统计表和不完整的折线统计图.
甲、乙两人选拔测试成绩统计表
并计算出乙同学六场选拔测试成绩的方差:
S乙2=$\frac{(87-91)^{2}+(98-91)^{2}+(87-91)^{2}+(89-91)^{2}+(100-91)^{2}+(85-91)^{2}}{6}$=$\frac{101}{3}$
(1)m=90,n=88,并补全全图中甲、乙两人选拔测试成绩折线统计图;
(2)求甲同学六场选拔测试成绩的方差S甲2;
(3)分别从平均数、中位数和方差的角度分析比较甲、乙二人的成绩各有什么特点?
(4)经查阅该校以往本项比赛的资料可知,①成绩若达到90次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
②该项成绩的最好记录是95次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
甲、乙两人选拔测试成绩统计表
| 甲成绩 (次/min) | 乙成绩 (次/min) | |
| 第1场 | 87 | 87 |
| 第2场 | 94 | 98 |
| 第3场 | 91 | 87 |
| 第4场 | 85 | 89 |
| 第5场 | 91 | 100 |
| 第6场 | 92 | 85 |
| 中位数 | 91 | n |
| 平均数 | m | 91 |
S乙2=$\frac{(87-91)^{2}+(98-91)^{2}+(87-91)^{2}+(89-91)^{2}+(100-91)^{2}+(85-91)^{2}}{6}$=$\frac{101}{3}$
(1)m=90,n=88,并补全全图中甲、乙两人选拔测试成绩折线统计图;
(2)求甲同学六场选拔测试成绩的方差S甲2;
(3)分别从平均数、中位数和方差的角度分析比较甲、乙二人的成绩各有什么特点?
(4)经查阅该校以往本项比赛的资料可知,①成绩若达到90次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
②该项成绩的最好记录是95次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
19.已知$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$是方程kx+2y=5的一个解,则k的值为( )
| A. | -$\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |