题目内容
如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为
上一点,连结AE,BE,BE交AC于点F,且AE2=EF•EB.
(1)求证:CB=CF;
(2)若点E到弦AD的距离为1,cos∠C=
,求⊙O的半径.
∵AE2=EF•EB,
∴
又∠AEF=∠AEB,
∴△AEF∽△AEB,
∴∠1=∠EAB.
∵∠1=∠2,∠3=∠EAB,
∴∠2=∠3,
∴CB=CF;
(2)解:如图2,连接OE交AC于点G,设⊙O的半径是r.
由(1)知,△AEF∽△AEB,则∠4=∠5.
∴
∴OE⊥AD,
∴EG=1.
∵cos∠C=
∴sin∠GAO=
∴
解得,r=
分析:(1)如图1,通过相似三角形(△AEF∽△AEB)的对应角相等推知,∠1=∠EAB;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;
(2)如图2,连接OE交AC于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠4=∠5,所以由“圆周角、弧、弦间的关系”推知点E是弧AD的中点,则OE⊥AD;然后通过解直角△ABC求得cos∠C=sin∠GAO=
点评:本题考查了切线的性质,相似三角形的判定与性质.解答(2)题的难点是推知点E是弧AD的中点.
练习册系列答案
相关题目