搜索
题目内容
正比例函数
y=
1
2
x
与一次函数y=-x+b的图象交于点(2,a),求一次函数的解析式.
试题答案
相关练习册答案
根据题意,得
a=
1
2
×2
a=-2+b
,
解得,
a=1
b=3
,
所以一次函数的解析式是y=-x+3.
练习册系列答案
新题型全程检测期末冲刺100分系列答案
金手指中考模拟卷系列答案
同步练习译林出版社系列答案
新疆小考密卷系列答案
初中现代文赏析一本通系列答案
全品高考第二轮专题系列答案
小学综合素质教育测评系列答案
口算基础训练系列答案
猫头鹰阅读系列答案
倍速同步口算系列答案
相关题目
正比例函数
y=
1
2
x
与反比例函数
y=
2
x
的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,如图所示,则四边形ABCD的面积为
.
如图,正比例函数
y=
1
2
x
的图象与反比例函数
y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P
(
5
3
,0)
(
5
3
,0)
,使PA+PB最小.
我们知道两个一次函数y=k
1
x+b
1
,y=k
2
x+b
2
,当k
1
=k
2
时,这两个一次函数的图象相互平行,那么两个一次函数的图象什么情况下相互垂直呢?下面我们就来探索.
(1)画一画
在同一平面直角坐标系下画出一次函数y=2x+1,y=-2x+3,y=
1
2
x-1,y=-
1
2
x+2的图象;
(2)想一想
仔细观察图象,结合四个一次函数的解析式提出猜想:当
k
1
•k
2
=-1
k
1
•k
2
=-1
时,两个一次函数y=k
1
x+b
1
,y=k
2
x+b
2
的图象相互垂直;
(3)用一用
利用(2)中的结论解决下面问题如图:已知正比例函数y=
1
2
x的图象和⊙P相切于点A,点P在x轴上,OP=3厘米,求⊙P的面积.
如图,正比例函数y=
1
2
x的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点
作x轴的垂线,垂足为M,已知△AOM的面积为1,点B(-1,t)为反比例函数在第三象限图象上的点.
(1)求反比例函数的解析式;
(2)试求出点A、点B的坐标;
(3)在y轴上求一点P,使|PA-PB|的值最大.
已知一次函数y
1
=kx+b的图象经过点(-1,-5)且与正比例函数y
2
=
1
2
x的图象相交于点(2,a).求:
(1)a、k、b 的值;
(2)画出这两个函数的图象,并求出这两个函数图象与x轴所围成的三角形面积;
(3)观察图象回答:当x为何值时,y
1
≤y
2
?当x为何值时,y
1
≥y
2
?
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案