题目内容
对于正数x,规定f(x)=
,如f(1)=
=
(1)计算f(2)=
;f(
)=
;f(2)+f(
)=
)=
(2)猜想f(x)+f(
)=
| x2 |
| 1+x2 |
| 1 |
| 1+1 |
| 1 |
| 2 |
(1)计算f(2)=
| 4 |
| 5 |
| 4 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 2 |
1
1
;f(3)+f(| 1 |
| 3 |
1
1
;…(2)猜想f(x)+f(
| 1 |
| x |
1
1
,请予以证明.分析:(1)将x=2及
代入f(x)计算得出f(2)与f(
)的值,进而求出f(2)+f(
)的值,以此类推求出f(3)+f(
)的值;
(2)归纳总结得到一般性结论,证明即可.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
(2)归纳总结得到一般性结论,证明即可.
解答:解:(1)f(2)=
=
;f(
)=
=
,f(2)+f(
)=
+
=1;f(3)+f(
)=
+
=
+
=1;
(2)猜想f(x)+f(
)=1,
理由为:f(x)+f(
)=
+
=
=1.
故答案为:(1)
;
;1;1;(2)1
| 4 |
| 1+4 |
| 4 |
| 5 |
| 1 |
| 2 |
| ||
1+
|
| 1 |
| 5 |
| 1 |
| 2 |
| 4 |
| 5 |
| 1 |
| 5 |
| 1 |
| 3 |
| 9 |
| 1+9 |
| ||
1+
|
| 9 |
| 10 |
| 1 |
| 10 |
(2)猜想f(x)+f(
| 1 |
| x |
理由为:f(x)+f(
| 1 |
| x |
| x2 |
| 1+x2 |
| ||
1+
|
| x2+1 |
| x2+1 |
故答案为:(1)
| 4 |
| 5 |
| 1 |
| 5 |
点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目