题目内容
若抛物线y=ax2+bx+c经过(0,1)和(2,-3)两点,且开口向下,对称轴在y轴的左侧,则a的取值范围是( )
A.a<0 B.-2<a<0 C.-<a<0 D.-1<a<0
如图,内接于,若∠OAB=30°, 则∠C的大小为 ( )
A.30° B.45° C.60° D.90°
计算:
如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD•DH中,正确的是 .
如图是一个圆柱体,则它的主视图是( )
关于x的二次函数y=-x2+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.
(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在,请求出点P的坐标;若不存在,请说明理由.
如图4,A是半径为5的⊙O内的一点,且OA=3.过点A且长小于8的弦有( )
A.0条 B.1条 C.2条 D.4条
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券,至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.