题目内容

如图,在等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC,若∠ACB=30°,试求∠E的度数.

解:由题意得:DC=AB,AC=AC,∠ABC=∠DCB,
∴可得:△ABC≌△DCB,
故:∠ACB=∠DBC=∠E=30°.
分析:根据SAS可判断△ABC≌△DCB,从而可得∠ACB=∠DBC=∠E,进而可得出答案.
点评:本题考查了等腰梯形及平行四边形的性质,难度不大,关键是证明△ABC≌△DCB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网