题目内容


.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为(  )

A.9       B.12     C.15     D.18

 

 


A【考点】相似三角形的判定与性质;等边三角形的性质.

【专题】压轴题.

【分析】由∠ADE=60°,可证得△ABD∽△DCE;可用等边三角形的边长表示出DC的长,进而根据相似三角形的对应边成比例,求得△ABC的边长.

【解答】解:∵△ABC是等边三角形,

∴∠B=∠C=60°,AB=BC;

∴CD=BC﹣BD=AB﹣3;

∴∠BAD+∠ADB=120°

∵∠ADE=60°,

∴∠ADB+∠EDC=120°,

∴∠DAB=∠EDC,

又∵∠B=∠C=60°,

∴△ABD∽△DCE;

解得AB=9.

故选:A.

【点评】此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得△ABD∽△DCE是解答此题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网