题目内容

20.已知α为锐角,当$\frac{tanα+1}{2}$=1时,求sin(α-15°)+$\sqrt{3}sin(α+15°)$的值.

分析 先求出α 的值,然后代入求解.

解答 解:∵$\frac{tanα+1}{2}$=1,
∴tanα=1,
则α=45°,
sin(α-15°)+$\sqrt{3}sin(α+15°)$
=$\frac{1}{2}$+$\sqrt{3}$×$\frac{\sqrt{3}}{2}$
=2.

点评 本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网