题目内容
小李家用长的篱笆围成一个一边靠墙(墙足够长)的矩形菜园,如图.
写出这块菜园的面积与垂直于墙的边长之间的函数解析式;
直接写出的取值范围.
若关于的方程是一元二次方程,则应满足________.
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
如图,抛物线的顶点坐标为P(2,5),则函数y随x的增大而减小时x的取值范围为( )
A. x>2 B. x<2
C. x>6 D. x<6
如图①,若直线交轴于点、交轴于点,将绕点逆时针旋转得到.过点,,的抛物线.
求抛物线的表达式;
若与轴平行的直线以秒钟一个单位长的速度从轴向左平移,交线段于点、交抛物线于点,求线段的最大值;
如图②,点为抛物线的顶点,点是抛物线在第二象限的上一动点(不与点、重合),连接,以为边作图示一侧的正方形.随着点的运动,正方形的大小、位置也随之改变,当顶点或恰好落在轴上时,直接写出对应的点的坐标.
若是反比例函数,则m=_______________.;
如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:
①;②方程的两个根是,③;④当时,的取值范围是;⑤当时,随增大而增大
其中结论正确的个数是( )
A. 个 B. 个 C. 个 D. 个
如图,点A、E、F、C在同一条直线上,AD∥BC,AD=CB,AE=CF.求证:BE=DF.
下面说法正确的是( )
A. 正多边形的各边相等 B. 各边相等的多边形是正多边形
C. 过三个点可以确定一个圆 D. 三角形的内心到三角形三个顶点的距离相等