题目内容
【题目】如图,在一块直角三角板ABC中,∠C=90°,∠A=30°,BC=1,将另一个含30°角的△EDF的30°角的顶点D放在AB边上,E、F分别在AC、BC上,当点D在AB边上移动时,DE始终与AB垂直,若△CEF与△DEF相似,则AD= .
![]()
【答案】
或![]()
【解析】
试题由于∠EDF=30°,且DE总垂直于AB,因此∠FDB=60°,此时发现△FDB是等边三角形,那么BD=BF,2﹣AD=1﹣CF,即AD=CF+1.由于∠C是直角,当△CEF与△DEF相似时,△DEF必为直角三角形,那么可分两种情况讨论:①∠DEF=90°,此时,△CEF∽△DEF;②∠DFE=90°,此时△CEF∽△FED;可根据各相似三角形得到的比例线段求出CF的值,进而可求得AD的值.
解:∵∠EDF=30°,ED⊥AB于D,
∴∠FDB=∠B=60°,
∴△BDF是等边三角形;
∵BC=1,∴AB=2;
∵BD=BF,
∴2﹣AD=1﹣CF;
∴AD=CF+1.
①如图1,∠FED=90°,△CEF∽△EDF,
![]()
∴
=
,即
=
,
解得,CF=
;
∴AD=
+1=
;
②如图2,∠EFD=90°,△CEF∽△FED,
![]()
∴
=
,即
=
;
解得,CF=
;
∴AD=
+1=
.
故答案为
或
.
练习册系列答案
相关题目