题目内容
如图正方形ABCD中,E为AD边上的中点,过A作AF⊥BE,交CD边于F,M是AD边上一点,且有BM=DM+CD.
⑴求证:点F是CD边的中点;
⑵求证:∠MBC=2∠ABE.
证明:⑴∵正方形ABCD中AD=AB,∠ADC=∠BAD=90°
∴∠1+∠2=90°
∵AF⊥BE ∴∠3+∠2=90°
∴∠1=∠3
在△ADF和△BAE中
![]()
∴△ADF≌△BAE ∴DF=AE
∵AE=DE=
AD AD=AB
∴DF=CF=
AB ∴点F是CD边的中点
⑵连结BF,并延长交AD的延长线于点N
∵正方形ABCD中AD∥BC ∴∠4=∠N
在△NDF和△BCF中![]()
∴△NDF≌△BCF ∴DN=CB
∵正方形ABCD中AD=BC=CD ∴DN=CD
∵BM=DM+CD ∴BM=DM+DN=MN
∴∠5=∠N=∠4 即∠MBC=2∠4
在△ADF和△BCF中![]()
∴△ADF≌△BCF ∴∠1=∠4
∵∠1=∠3 ∴∠1=∠4
∴∠MBC=2∠3=2∠ABE
(注:只要方法正确按同等情况给分)新- 课 -标- 第 -一- 网