题目内容
如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE于点E,CE与AB交于点F,AD⊥CF于点D,且AD平分∠FAC.请写出图中两对全等三角形,并选择其中一对加以说明.
![]()
如图,已知∠AOB=α,且PC∥OB,现以P为顶点,PC为一边作∠CPD=α,并用移动三角尺的方法验证,PD与OA是否平行.
![]()
某商场为了吸引更多的顾客,安排了一个抽奖活动,并规定:顾客每购买100元商品,就能获得一次抽奖的机会.抽奖规则如下:在抽奖箱内,有100个牌子,分别写有1,2,3,…,100共100个数字,抽到末位数是5的可获20元购物券,抽到数字是88的可获200元购物券,抽到66或99的可获100元购物券.某顾客购物用了130元,他获得购物券的概率是多少?他获得20元、100元、200元购物券的概率分别是多少?
查看答案在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.
![]()
如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律摆.
![]()
(1)第5个“广”字中的棋子个数是 .
(2)第n个“广”字需要多少枚棋子?
查看答案如图,点D在AB上,点E在AC上,AB=AC,AD=AE.试说明∠B=∠C.
![]()
- 题型:解答题
- 难度:中等
下列式子中,正确的是( )
A. ﹣6<﹣8 B. ﹣
>0 C. ﹣
<﹣
D.
<0.3
﹣2007的绝对值是( )
A. ﹣2007 B. ﹣
C.
D. 2007
若规定收入为“+”,那么﹣50元表示( )
A.收入了50元
B.支出了50元
C.没有收入也没有支出
D.收入了100元
查看答案(1)阅读理【解析】
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
![]()
下面是某同学对多项式(x2﹣4x﹣3)(x2﹣4x+1)+4进行因式分解的过程.
【解析】
设x2﹣4x=y
原式=(y﹣3)(y+1)+4(第一步)
=y2﹣2y+1 (第二步)
=(y﹣1)2 (第三步)
=(x2﹣4x﹣1)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的 .
A.提取公因式法 B.平方差公式法 C.完全平方公式法
(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
查看答案如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.
(1)求证:△BEF是等腰三角形;
(2)求证:BD=
(BC+BF).
![]()
- 题型:单选题
- 难度:简单
下列式子:x2+2,
,
,
,﹣5x,0中,整式的个数有( )
A. 3个 B. 4个 C. 5个 D. 6个
B 【解析】根据整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式都统称为整式。因此可知x2+2, ,﹣5x,0是整式,故有4个. 故选:B.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为( )
A. 0.21×108 B. 2.1×106 C. 2.1×107 D. 21×106
查看答案两个数的和为正数,那么这两个数是( )
A. 正数 B. 负数
C. 至少有一个为正数 D. 一正一负
查看答案若|x|=4,|y|=7,且x+y>0,那么x﹣y的值是( )
A. 3或11 B. 3或﹣11 C. ﹣3或11 D. ﹣3或﹣11
查看答案数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是( )
A. 4 B. ﹣4 C. ±8 D. ±4
查看答案的倒数是( )![]()
A. B. ![]()
C. ![]()
D. ![]()
- 题型:单选题
- 难度:中等
在3,﹣4,6,﹣7这四个数中,任取两个数相乘,所得的积最大的是_____.
28. 【解析】根据有理数的乘法,同号得正,异号的负,并把绝对值相乘,分别取四个数中的两个计算,比较可求解:3×(-4)=-12,3×6=18,3×(-7)=-21,(-4)×6=-24,(-4)×(-7)=28,6×(-7)=-42,最大的乘积为28. 故答案为:28.若a、b互为倒数,则(﹣ab)2017=_____.
查看答案x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为( )
A. 0 B. ﹣1 C. ﹣2 D. 2
查看答案一个多项式与x2﹣3x+2的和是3x﹣1,则这个多项式为( )
A. ﹣x2+6x+1 B. ﹣x2+1 C. ﹣x2+6x﹣3 D. ﹣x2﹣6x+1
查看答案下列运算正确的是( )
A. ﹣a2b﹣2a2b=﹣3a2b B. 2a﹣a=2a
C. 3a2+2a2=5a4 D. 2a+b=2ab
查看答案多项式
的各项分别是 ( )
A、
B、
C、
D、![]()
- 题型:填空题
- 难度:中等
两个数的和为正数,那么这两个数是( )
A. 正数 B. 负数
C. 至少有一个为正数 D. 一正一负
C 【解析】根据题意,当两个数为正数时,和为正;当两数一个正数和0时,和为正;当两数一个为正一个为负,且正数的绝对值较大时,和为正. 故选:C.若|x|=4,|y|=7,且x+y>0,那么x﹣y的值是( )
A. 3或11 B. 3或﹣11 C. ﹣3或11 D. ﹣3或﹣11
查看答案数轴上一点A,一只蚂蚁从A 出发爬了4个单位长度到了原点,则点A所表示的数是( )
A. 4 B.
C.
D. ![]()
﹣2017的倒数是( )
A.
B. ﹣
C. 2017 D. ﹣2017
在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动.若设CD=x,△ABD的面积为y.
(1)请写出y与x之间的关系式.
(2)当x为何值时,y有最大值,最大值是多少?此时点D在什么位置?
(3)当△ABD的面积是△ABC的面积的一半时,点D在什么位置?
查看答案如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE于点E,CE与AB交于点F,AD⊥CF于点D,且AD平分∠FAC.请写出图中两对全等三角形,并选择其中一对加以说明.
![]()
- 题型:单选题
- 难度:困难
如图,点D在AB上,点E在AC上,AB=AC,AD=AE.试说明∠B=∠C.
![]()
先化简再求值:(a-2)2-(a-1)·(a+1)+5a,其中a=-2.
查看答案小聪和小明沿同一条路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4 km,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O—A—B—C和线段OD分别表示两人离学校的路程s(km)与所经过的时间t(min)之间的关系,请根据图象回答:下列四个结论
![]()
①小聪在图书馆查阅资料的时间为15 min;
②小聪返回学校的速度为
km/min;
③小明离开学校的路程s(km)与所经过的时间t(min)之间的关系式是s=
t;
④当小聪与小明迎面相遇时,他们离学校的路程是
km.
其中正确结论的序号是_____.
查看答案如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=__度.
![]()
如图,∠1+∠2=284°,b∥c,则∠3= ,∠4= .
![]()
一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是 .
查看答案 试题属性- 题型:解答题
- 难度:简单
[6a2b2+___+____]÷2ab2=3a+b-1.
2ab3 (-2ab2) 【解析】试题解析:[6a2b2+2ab3+(-2ab2)]÷2ab2=3a+b-1. 故答案为:2ab3;(-2ab2).在一个不透明的盒子里装有5个黑球,3个红球和2个白球,它们除颜色外其余都相同,从中随机摸出一个球,摸到红球的概率是 .
查看答案有一种原子的直径约为0.000 000 53 m,它可以用科学记数法表示为________.
查看答案如图,已知C是线段AB上的任意一点(端点除外),分别以AC,BC为边并且在AB的同一侧作等边三角形ACD和等边三角形BCE,连接AE交CD于点M,连接BD交CE于点N.给出以下三个结论:
①AE=BD;②CN=CM;③MN∥AB.其中正确结论的个数是( )
![]()
A. 0 B. 1 C. 2 D. 3
查看答案小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是( ).
A.
B.
C.
D. ![]()
把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( )
![]()
A. 对应点连线与对称轴垂直
B. 对应点连线被对称轴平分
C. 对应点连线被对称轴垂直平分
D. 对应点连线互相平行
查看答案 试题属性- 题型:填空题
- 难度:简单
(本小题满分
分)
如图,
是⊙
的直径,点
是⊙
上一点,连接
,
,
于
.
![]()
(
)求证:
.
(
)若
,
,求⊙
的直径.
二次函数
的图象经过点
,
.
(
)求
,
的值;
(
)求该二次函数图象的对称轴及与
轴交点坐标.
如图
,在
的正方形方格中,
的顶点都在边长为
的小正方形的顶点.
(
)填空:
__________,
__________
;
(
)请在图
中的两个
的正方形方格中各画一个和
相似但不全等的格点三角形.
![]()
![]()
如图,在正方形
中,
为对角线
,
的交点,经过点
和点
作⊙
,分别交
,
于点
,
.已知正方形边长为
,⊙
的半径为
,则
的值为__________.
![]()
如图,抛物线
交
轴于点
,
,交
轴于点
,在
轴上方的抛物线上有两点
,
,它们关于
轴对称,点
,
在
轴左侧,
于点
,
于点
,四边形
与四边形
的面积分别为
和
,则
与
的面积之和为__________.
![]()
如图,已知
,
,
,
是⊙
上的四个点,
,
交
于点
,连接
,
.若
,
,则
__________.
![]()
- 题型:解答题
- 难度:中等
如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要( )
![]()
A. AB=CD B. EC=BF C. ∠A=∠D D. AB=BC
A 【解析】∵EA∥DF, ∴∠A=∠D, 又∵AE=DF, ∴只需添上选项A中的条件:AB=CD即可得到:AC=DB,从而由“SAS”证得△AEC≌△DFB,而添加其它三个选项中的条件都不能证得△AEC≌△DFB. 故选A.如图,已知在△ABC中,∠ABC=70°,∠C=50°,BD是角平分线,则∠BDC的度数为
![]()
A. 95° B. 100° C. 110° D. 120°
查看答案三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形( )
A. 1个 B. 3个 C. 5个 D. 无数个
查看答案在下列四个交通标志图中,是轴对称图形的是( )
A.
B.
C.
D. ![]()
已知实数
,
满足:
,且
,求
的值.
已知
与
互为相反数,求
的平方根.
- 题型:单选题
- 难度:简单