题目内容
如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于_____.
如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是______.
儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价3倍少6元,那么书包和文具盒的标价各是多少元?
用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )
如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.
已知过一个多边形的某一顶点共可作2017条对角线,则这个多边形的边数是_____.
在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC( )
A. 三条角平分线的交点 B. 三边垂直平分线的交点
C. 三条高的交点 D. 三条中线的交点
将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_____度.
认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,如表示5、3在数轴上对应的两点之间的距离; ,所以表示5、﹣3在数轴上对应的两点之间的距离; ,所以表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为.
问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
问题(2):利用数轴探究:
①找出满足的x的所有值是 ,
②设,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 ;当x的取值范围是 时, 取得最小值,最小值是 .
问题(3):求的最小值以及此时x的值;
问题(4): ,求的最大值和最小值.