题目内容
如图,在平面直角坐标系中,直线
与抛物线
交于A、B两点,点A在x轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作如图所示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,求出对应的点P的坐标.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作如图所示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,求出对应的点P的坐标.
(1)
(2)①15 ②
试题分析:解:(1)对于
∴A点坐标为(2,0),B点坐标为
由抛物线
解得
(2)①设直线
∵点A的坐标为(2,0),∴OA=2.∴AM=
∵OM:OA:AM=3∶4:5.
由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM~△PED.
∴DE:PE:PD=3∶4:5.
∵点P是直线AB上方的抛物线上一动点
∴PD=yP-yD
∴
由△ACP≌△GOA得PC=AO=2,即
所以
点评:该题主要考查学生对观察图形,判断二次函数解析式开口、最值以及求解析式方法的掌握,同时考查在直角坐标系中对几何图形的应用。
练习册系列答案
相关题目