ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªµãOÎª×ø±êԵ㣬Å×ÎïÏßy=-x2+2mx-m2+2µÄ¶¥µãPÔÚµÚÒ»ÏóÏÞ£¬ÇÒÕâÌõÅ×ÎïÏßÓëyÖá½»ÓÚµãC£¬ÓëxÖáµÄÁ½¸ö½»µãA£¬B¶¼ÔÚÕý°ëÖᣬÆäÖеãBÔÚµãAµÄÓҲ࣬¹ýµãP×÷yÖáµÄ´¹Ïߣ¬´¹×ãΪQ£®£¨1£©ÈôPQ=OQ£¬ÇóµãAµÄ×ø±ê£»
£¨2£©ÉèÅ×ÎïÇ®µÄ¶Ô³ÆÖáÓëxÖá½»ÓÚµãD£¬ÔÚÏß¶ÎOQÉϽØÈ¡OE=OD£¬Ö±ÏßDEÓ뼺֪Å×ÎïÏß½»ÓÚµãMºÍµãN£¬µãNÔÚxÖáÉÏ·½£¬·Ö±ð¼Ç¡÷NCE£¬¡÷MEQµÄÃæ»ýΪS1ºÍS2£¬ÊԱȽÏS1ºÍS2µÄ´óС£®
·ÖÎö £¨1£©ÏÈÇó³öÅ×ÎïÏß¶¥µã×ø±ê£¬¸ù¾ÝOP=OQ¼´¿ÉÇó³öm½â¾öÎÊÌ⣮
£¨2£©ÀûÓ÷½³Ì×éÇÐÏßÖ±ÏßDEÓëÅ×ÎïÏߵĽ»µã×ø±ê£¬ÀûÓÃÇó²î·¨Çó³öS1-S2£¬ÔÙ¸ù¾ÝmµÄȡֵ·¶Î§È·¶¨Æä´óС£®
½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬![]()
¡ßy=-x2+2mx-m2+2=-£¨x-m£©2+2£¬
¡à¶¥µãP£¨m£¬2£©£¬OQ=2£¬
¡ßOP=OQ£¬
¡àm=2£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-x2+4x-2£¬
Áîy=0£¬Ôò-x2+4x-2=0£¬
¡àx=2¡À$\sqrt{2}$£¬
¡àµãA×ø±ê£¨2-$\sqrt{2}$£¬0£©£®
£¨2£©Èçͼ2ÖУ¬ÓÉÌâÒâµãE£¨0£¬m£©£¬µãD£¨m£¬0£©£¬
¡àÖ±ÏßED½âÎöʽΪy=-x+m£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+m}\\{y=-{x}^{2}+2mx-{m}^{2}+2}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=m+2}\\{y=-2}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=m-1}\\{y=1}\end{array}\right.$£¬
¡àµãM£¨m+2£¬-2£©£¬µãN£¨m-1£¬1£©£¬
¡àS1=$\frac{1}{2}$£¨m+m2-2£©•£¨m-1£©=$\frac{1}{2}$£¨m-1£©2£¨m+2£©£¬![]()
S2=$\frac{1}{2}$£¨2-m£©£¨m+2£©£¬
¡àS1-S2=$\frac{1}{2}$£¨m+2£©£¨m2-m-1£©£¬
¡ßµãEÔÚÏß¶ÎOQÉÏ£¬¡à0¡Üm¡Ü2£¬
¡ßÕâÌõÅ×ÎïÏßÓëyÖá½»ÓÚµãC£¬ÓëxÖáµÄÁ½¸ö½»µãA£¬B¶¼ÔÚÕý°ëÖᣬ¿ª¿ÚÏòÏ£¬
¡àc£¼0£¬¼´-m2+2£¼0£¬
¡ß0¡Üm¡Ü2£¬
¡à$\sqrt{2}$£¼m¡Ü2
¡àµ±$\sqrt{2}$£¼m£¼$\frac{1+\sqrt{5}}{2}$ʱ£¬S1-S2£¼0£¬¼´S1£¼S2£®
µ±m=$\frac{1+\sqrt{5}}{2}$ʱ£¬S1=S2£¬
µ±$\frac{1+\sqrt{5}}{2}$£¼m¡Ü2ʱ£¬S1-S2£¾0£¬¼´S1£¾S2£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýÓëxÖáµÄ½»µã¡¢Åä·½·¨È·¶¨¶¥µã×ø±êµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓòÎÊý½â¾öÎÊÌ⣬ѧ»áÀûÓöþ´Îº¯ÊýµÄÐÔÖʱȽÏS1£¬S2µÄ´óС£¬ÌâÄ¿±È½ÏÄÑ£¬ÊÇÖп¼Ñ¹ÖáÌ⣮
¢Ù0ÊǾø¶ÔÖµ×îСµÄʵÊý£»¡¡¡¡¡¡¡¡¡¡
¢ÚÏà·´Êý´óÓÚ±¾ÉíµÄÊýÊǸºÊý£»
¢ÛÊýÖáÉÏÔµãÁ½²àµÄÊý»¥ÎªÏà·´Êý£»¡¡¡¡
¢Ü´ø¸ùºÅµÄÊýÊÇÎÞÀíÊý£®
| A£® | ¢Ù¢Ú | B£® | ¢Ù¢Û | C£® | ¢Ù¢Ú¢Û | D£® | ¢Ù¢Ú¢Û¢Ü |
| A£® | -3 | B£® | 3 | C£® | $\frac{1}{3}$ | D£® | -$\frac{1}{3}$ |
| A£® | a£¾b£¾c | B£® | b£¾a£¾c | C£® | b£¾c£¾a | D£® | c£¾b£¾a |