题目内容
如图,已知矩形ABCD,把矩形沿直线AC折叠,点B落在点E处,连接DE、BE,若△ABE是等边三角形,则= .
在平行四边形ABCD中,若∠A+∠C=140°,则∠B= .
如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.
如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是( )
A.3 B.4 C.5 D.6
如图某人在一斜坡坡脚A处测得电视塔塔尖C的仰角为60°,沿斜坡向上走到P处再测得塔尖C的仰角为45°,若OA=45米,斜坡的坡比(竖直高度与水平高度的比)为1:2,且O、A、B在同一条直线上.求电视塔OC的高度及此人所在位置P到AB的距离.(测角器高度忽略不计,结果精确到0.1米.参考数据:,)
下列事件:
①随意翻到一本书的某页,这页的页码是奇数;
②测得某天的最高气温是100℃;
③掷一次骰子,向上一面的数字是2;
④度量四边形的内角和,结果是360°.
其中是随机事件的是 .(填序号)
如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是( )
A.点A和点B关于原点对称 B.当x<1时,y1>y2
C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大
如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是 .
如图1,四边形ABCD中,AD∥BC,AB⊥BC,点E在边AB上,∠DEC=900,且DE=EC.
(1)求证:△ADE≌△BEC;
(2)若AD=a,AE=b,DE=c,请用图1证明勾股定理:a2+b2=c2;
(3)线段AB上另有一点F(不与点E重合),且DF⊥CF(如图2),若AD=2,BC=4,求EF的长.