题目内容
(本题10分)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).
(1)令P0(2,-3),O为坐标原点,则d(O,P0)= ;
(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(3)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.若P(a,-3)到直线y=x+1的直角距离为6,求a的值.
练习册系列答案
相关题目
(本题满分10分)
某乡组织20辆汽车装运A、B、C三个品种的苹果42吨到外地销售。按规定每辆车只装同一品种苹果,且必须装满。每一个品种苹果不少于2车。
苹果品种 | A | B | C |
每辆汽车运载量(吨) | 2.2 | 2.1 | 2 |
每吨苹果获利(百元) | 6 | 8 | 5 |
(1)设x辆车装运A种苹果,用y辆车装运B种苹果,根据上表提供的信息,求x与y间的函数关系式,并求x的取值范围;
(2)设此次外销活动的利润为 w (百元),求w与x的函数关系式以及最大利润,并写出相应的车辆分配方案。