题目内容
△ABC中,点O是△ABC内一点且到△ABC三边的距离相等,∠A=40°,则∠BOC=__________.
110°.
【考点】角平分线的性质.
【分析】根据O到三角形三边距离相等,得到O是内心,再利用三角形内角和定理和角平分线的概念即可求出∠BOC的度数.
【解答】解:∵O到三角形三边距离相等,
∴O是内心,
∴AO,BO,CO都是角平分线,
∴∠CBO=∠ABO=
∠ABC,∠BCO=∠ACO=
∠ACB,
∠ABC+∠ACB=180°﹣40°=140°,
∠OBC+∠OCB=70°,
∠BOC=180°﹣70°=110°.
故答案为:110°.
![]()
【点评】本题考查的是角平分线的定义和三角形的内心的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
练习册系列答案
相关题目