题目内容

如图,正方形ABCD的边长为4cm,则它的外接圆的半径长为(  )
A、
2
cm
B、4
2
cm
C、3
2
cm
D、2
2
cm
考点:正多边形和圆
专题:
分析:连接OA,OD,根据圆周角定理可知∠AOD=90°,故△AOD是等腰直角三角形,再根据勾股定理求出OA的长即可.
解答:解:∵连接OA,OD,
∵四边形ABCD是正方形,
∴∠AOD=90°,
∴△AOD是等腰直角三角形,
∴OA2+OD2=AD2,即2OA2=42,解得OA=2
2
(cm).
故选D.
点评:本题考查的是正多边形和圆,熟知正方形的性质是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网