ÌâÄ¿ÄÚÈÝ
13£®Ñ§Éú×îϲ»¶µÄ»î¶¯ÏîÄ¿µÄÈËÊýͳ¼Æ±í
| ÏîÄ¿ | ѧÉúÊý£¨Ãû£© | °Ù·Ö±È |
| ¶ªÉ³°ü | 20 | 10% |
| ´òÀºÇò | 60 | p% |
| Ìø´óÉþ | n | 40% |
| Ìßë¦Çò | 40 | 20% |
£¨1£©m=200£¬n=80£¬p=30£»
£¨2£©Çë¸ù¾ÝÒÔÉÏÐÅÏ¢Ö±½Ó²¹È«ÌõÐÎͳ¼ÆÍ¼£»
£¨3£©¸ù¾Ý³éÑùµ÷²é½á¹û£¬ÇëÄã¹À¼Æ¸ÃУ2000ÃûѧÉúÖÐÓжàÉÙÃûѧÉú×îϲ»¶Ìø´óÉþ£®
·ÖÎö £¨1£©ÀûÓÃ20¡Â10%=200£¬¼´¿ÉµÃµ½mµÄÖµ£»ÓÃ200¡Á40%¼´¿ÉµÃµ½nµÄÖµ£¬ÓÃ60¡Â200¼´¿ÉµÃµ½pµÄÖµ£®
£¨2£©¸ù¾ÝnµÄÖµ¼´¿É²¹È«ÌõÐÎͳ¼ÆÍ¼£»
£¨3£©¸ù¾ÝÓÃÑù±¾¹À¼Æ×ÜÌ壬2000¡Á40%£¬¼´¿É½â´ð£®
½â´ð ½â£º£¨1£©m=20¡Â10%=200£»n=200¡Á40%=80£¬60¡Â200=30%£¬p=30£¬
¹Ê´ð°¸Îª£º200£¬80£¬30£»
£¨2£©Èçͼ£¬![]()
£¨3£©2000¡Á40%=800£¨ÈË£©£¬
´ð£º¹À¼Æ¸ÃУ2000ÃûѧÉúÖÐÓÐ800ÃûѧÉú×îϲ»¶Ìø´óÉþ£®
µãÆÀ ±¾Ì⿼²éÁËÌõÐÎͳ¼ÆÍ¼¡¢ÉÈÐÎͳ¼ÆÍ¼¡¢¸ÅÂʹ«Ê½£¬¶Á¶®Í³¼ÆÍ¼£¬´Óͳ¼ÆÍ¼Öеõ½±ØÒªµÄÐÅÏ¢Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®ÌõÐÎͳ¼ÆÍ¼ÄÜÇå³þµØ±íʾ³öÿ¸öÏîÄ¿µÄÊý¾Ý£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®ÏÂÁÐÃüÌâÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
| A£® | ͬλ½ÇÏàµÈ | |
| B£® | Èý½ÇÐεÄÈý¸öÄÚ½ÇÖУ¬ÖÁÉÙÓÐÒ»¸ö²»´óÓÚ60¡ã | |
| C£® | ÈκÎÊýµÄÁã´ÎÃݶ¼ÊÇ1 | |
| D£® | ´¹Ö±ÓÚͬһֱÏßµÄÁ½ÌõÖ±Ïß»¥Ïà´¹Ö± |
18£®ÔÚÏÂÁÐÖ±ÏßÖУ¬ÓëÖ±Ïßy=x+3ÏཻÓÚµÚ¶þÏóÏÞµÄÊÇ£¨¡¡¡¡£©
| A£® | y=x | B£® | y=2x | C£® | y=kx+2k+1£¨k¡Ù1£© | D£® | y=kx-2k+1£¨k¡Ù0£© |
5£®²»¸Ä±ä·ÖʽµÄÖµ£¬Ê¹·Öʽ$\frac{{\frac{1}{2}{x^2}+\frac{1}{3}}}{{\frac{1}{2}{x^2}-\frac{1}{3}{x^3}}}$µÄ·Ö×ӺͷÖĸ¸÷ÏîµÄϵÊýÊÇÕûÊý£¬»¯¼òµÄ½á¹ûΪ£¨¡¡¡¡£©
| A£® | $\frac{{2{x^2}+3}}{{2{x^2}-3{x^3}}}$ | B£® | $\frac{{3{x^2}+2}}{{2{x^2}-3{x^3}}}$ | C£® | $\frac{{3{x^2}+2}}{{3{x^2}-2{x^3}}}$ | D£® | $\frac{{3{x^2}+2}}{{3{x^3}-2{x^2}}}$ |