题目内容

19.把二次函数y=x2+bx+c的图象沿y轴向下平移1个单位长度,再沿x轴向左平移5个单位长度后,所得的抛物线的顶点坐标为(-2,0),原抛物线相应的函数表达式是y=x2-6x+10.

分析 逆向思考:把平移后的抛物线顶点(-2,0)向上平移1个单位长度,再沿x轴向右平移5个单位长度后得到原抛物线的顶点坐标,然后利用顶点式写出原抛物线相应的函数表达式.

解答 解:把点(-2,0)向上平移1个单位长度,再沿x轴向右平移5个单位长度后所得对应点的坐标为(3,1),
即二次函数y=x2+bx+c图象的顶点坐标为(3,1),
所以原抛物线相应的函数表达式为y=(x-3)2+1,即y=x2-6x+10.
故答案为y=x2-6x+10.

点评 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网