题目内容
设n为自然数,且an=
+
+
,则
+
+…+
+
= .
| 3 | n2+2n+1 |
| 3 | n2-1 |
| 3 | n2-2n+1 |
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a997 |
| 1 |
| a999 |
考点:有理数无理数的概念与运算
专题:
分析:运用乘法公式(a-b)(a2+ab+b2)=a3-b3,求出an的倒数,得出一般规律,再计算算式.
解答:解:由已知得an=(n+1)
+(n+1)
•(n-1)
+(n-1)
,
而[(n+1)
-(n-1)
][(n+1)
+(n+1)
•(n-1)
+(n-1)
]
=[(n+1)
]3-[(n-1)
]3
=(n+1)-(n-1)
=2,
即[(n+1)
-(n-1)
]•an=2,
所以
=
(
-
),
则
+
+…+
+
=
(
-0+
-
+
-
+…+
-
+
-
)
=
×
=
×10
=5.
故答案为:5.
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
而[(n+1)
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
=[(n+1)
| 1 |
| 3 |
| 1 |
| 3 |
=(n+1)-(n-1)
=2,
即[(n+1)
| 1 |
| 3 |
| 1 |
| 3 |
所以
| 1 |
| an |
| 1 |
| 2 |
| 3 | n+1 |
| 3 | n-1 |
则
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a997 |
| 1 |
| a999 |
=
| 1 |
| 2 |
| 3 | 2 |
| 3 | 4 |
| 3 | 2 |
| 3 | 6 |
| 3 | 4 |
| 3 | 998 |
| 3 | 996 |
| 3 | 1000 |
| 3 | 998 |
=
| 1 |
| 2 |
| 3 | 1000 |
=
| 1 |
| 2 |
=5.
故答案为:5.
点评:本题考查了有理数无理数的概念与运算.关键是分析an的式子结构特点,利用乘法公式推出一般规律.
练习册系列答案
相关题目
| A、4cm2 |
| B、6cm2 |
| C、8cm2 |
| D、12cm2 |