题目内容
抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为( )
A. 1≤x≤4 B. x≤4 C. x≥1 D. x≤1或x≥4
如图,在直角坐标系中,半径为1的⊙A圆心与原点O重合,直线l分别交x轴、y轴于点B、C,若点B的坐标为(6,0),tan∠ABC=.
(1)若点P是⊙A 上的动点,求P到直线BC的最小距离,并求此时点P的坐标;
(2)若点A从原点O出发,以1个单位/秒的速度沿着线路OB→BC→CO运动,回到点O停止运动,⊙A随着点A的运动而移动.设点A运动的时间为t.
①求⊙A在整个运动过程中与坐标轴相切时t的取值;
②求⊙A在整个运动过程中所扫过的图形的面积为 .
若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|=( )
A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c
(1)解方程:2x2+3=7x; (2)解方程:(2x+1)2+4(2x+1)+3=0.
若点A(2,1)与点B是关于原点O的对称点,则点B的坐标为_______.
用配方法解方程x2+8x+9=0,变形后的结果正确的是( )
A. (x+4)2=﹣7 B. (x+4)2=﹣9 C. (x+4)2=7 D. (x+4)2=25
已知二次函数y=a(x﹣h)2,当x=2时有最大值,且此函数的图象经过点(1,﹣3),求此二次函数的关系式,并指出当x为何值时,y随x的增大而增大.
向西为负,当天的行驶记录如下(单位:千米): +18,-9,+7,+14,-3,-6,-8,
(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?
(2)养护过程中,最远处离出发点有多远?
(3)若汽车行驶每千米耗油量为0.2升,求这次养护小组的汽车共耗油多少升?
下面给出的四条数轴中画得正确的是( )
A. B.
C. D.