题目内容

如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.

(1)当点F与点C重合时如图1,证明:DF+BE=AF;

(2)当点F在DC的延长线上时如图2,当点F在CD的延长线上时如图3,线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.

(1)证明见解析(2)证明见解析 【解析】试题分析:(1)由折叠可得AB=AB′,BE=B′E,再根据四边形ABCD是正方形,易证B′E=B′F,即可证明DF+BE=AF; (2)图(2)的结论:DF+BE=AF;图(3)的结论:BE-DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠D...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网