题目内容

13.如图,△ABC是等边三角形,D是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明你的结论.

分析 由△ABC是等边三角形,得出∠BAD=∠BCA=60°,AB=AC,由SAS证得△ABD≌△ACE,得出∠BAD=∠CAE=∠BCA,即可得出结论.

解答 解:BC与AE的位置关系是:BC∥AE;理由如下:
∵△ABC是等边三角形,
∴∠BAD=∠BCA=60°,AB=AC,
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠1=∠2}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴∠BAD=∠CAE=60°,
∴∠CAE=∠BCA,
∴BC∥AE.

点评 本题考查了全等三角形的判定与性质、等边三角形的性质、平行线的判定等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网