题目内容

已知x1、x2是方程x2-(k-2)x+(k2+3k+5)=0的两个实根,则x12+x22的最大值是


  1. A.
    19
  2. B.
    18
  3. C.
    数学公式
  4. D.
    以上答案都不对
B
分析:根据x1、x2是方程x2-(k-2)x+(k2+3k+5)=0的两个实根,由△≥0即可求出k的取值范围,然后根据根与系数的关系求解即可.
解答:由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0?3k2+16k+16≤0?(3k+4)(k+4)≤0
?-4≤k≤-
又由x1+x2=k-2,x1•x2=k2+3k+5,得
x12+x22=(x1+x22-2x1x2=(k-2)2-2(k2+3k+5)=-k2-10k-6=19-(k+5)2
当k=-4时,x12+x22取最大值18.
故选B.
点评:本题考查了根与系数的关系,属于基础题,关键是根据△≥0先求出k的取值范围再根据根与系数的关系进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网