题目内容
1.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?
(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?
分析 (1)本题可根据两车的辆数的数量关系来列方程.等量关系为:装270台需A型车的数量=装300台需B型车的数量+1.由此可得出方程求出未知数.
(2)可先根据(1)求出单独用两种车分别要多少费用,然后让同时用两种车时花的费用小于单独用一种车的最少的费用.得出车的数量的取值范围,然后判断出有几种运输方案,然后根据运输方案求出运费.
解答 解:(1)设A型汽车每辆可装计算机x台,则B型汽车每辆可装计算机(x+15)台.
依题意得:$\frac{270}{x}$=$\frac{270+30}{x+15}$+1.
解得:x=45,x=-90(舍去).
经检验:x=45是原方程的解.
则x+15=60.
答:A型汽车每辆可装计算机45台,B型汽车每辆可装计算机60台.
(2)由(1)知.
若单独用A型汽车运送,需6辆,运费为2100元;
若单独用B型汽车运送,需车5辆,运费为2000元.
若按这种方案需同时用A,B两种型号的汽车运送,设需要用A型汽车y辆,则需B型汽车(y+1)辆.根据题意可得:350y+400(y+1)<2000.
解得:y<$\frac{32}{15}$.
因汽车辆数为正整数.∴y=1或2.
当y=1时,y+1=2.则45×1+60×2=165<270.不同题意.
当y=2时,y+1=3.则45×2+60×3=270.符合题意.
此时运费为350×2+400×3=1900元.
答:需要用A型汽车2辆,则需B型汽车3辆.运费1900元
点评 本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程或不等式,再求解.
练习册系列答案
相关题目
13.在平面直角坐标系内,点P(-3,2)关于原点的对称点Q的坐标为( )
| A. | (2,-3) | B. | (3,2) | C. | (3,-2) | D. | (-3,-2) |