题目内容

2.如图,在Rt△ABC中,∠C=90°,MN⊥AB于M,AM=8cm,AC=$\frac{4}{5}$AB,BC=15cm,则四边形BCNM的面积为126.

分析 由△AMN∽△ACB,推出$\frac{AM}{AC}$=$\frac{MN}{BC}$=$\frac{AN}{AB}$,由AC:AB=4:5,设AC=4k,AB=5k,则BC=3k,由BC=15,推出k=5,AC=20,AB=25,根据四边形BCNM的面积=S△ABC-S△AMN即可解决问题.

解答 解:∵MN⊥AB,
∴∠AMN=∠C=90°,
∵∠A=∠A,
∴△AMN∽△ACB,
∴$\frac{AM}{AC}$=$\frac{MN}{BC}$=$\frac{AN}{AB}$,
∵AC:AB=4:5,设AC=4k,AB=5k,则BC=3k,
∵BC=15,
∴3k=15,
∴k=5,AC=20,AB=25,
∴MN=6,AN=8,
∴四边形BCNM的面积=S△ABC-S△AMN=$\frac{1}{2}$×20×15-$\frac{1}{2}$×8×6=126.
故答案为126.

点评 本题考查相似三角形的性质和判定、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网