题目内容
用适当的方法解下列方程:
(1) (x-1)(x+3)=12;
(2) 9(x-2)2=4(x+1)2;
(3) 2x2-6x-1=0;
(4)(3x-7)2=2(3x-7);
我们知道,任意一个正整数n都可以进行这样的分【解析】n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=,例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=.
(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数,求证:对任意一个完全平方数m,总有F(m)=1.
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.
估计的运算结果应在哪两个连续自然数之间( )
A. 5和6 B. 6和7 C. 7和8 D. 8和9
学校课外生物小组的试验园地是长32m、宽20m的矩形,为便于管理,现要在试验园地开辟水平宽度均为xm的小道(图中阴影部分).
(1)如图1,在试验园地开辟一条水平宽度相等的小道,则剩余部分面积为 m2(用含x的代数式表示);
(2)如图2,在试验园地开辟水平宽度相等的三条小道,其中有两条道路相互平行. 若使剩余部分面积为570m2,试求小道的水平宽度x.
如果方程x2+(k-1)x-3=0的一个根为2,那么k的值为________。
河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1∶,则AB的长为( )米.
A. 12 B. 4 C. 5 D. 6