题目内容
| k |
| x |
考点:反比例函数与一次函数的交点问题
专题:
分析:延长AC交x轴于B,作DE⊥x轴于E,根据AB∥DE,得出
=
=
,根据OD=2AD,求得
=
=
,设C(m,
),则D(
m,
),从而求得AB=
,进而求得AC=AB-BC=
-
=
,然后根据三角形的面积公式得出S△ACD=
AC•BE=
×
×(
m-m)=10,从而求得k的值.
| OD |
| OA |
| OE |
| OB |
| DE |
| AB |
| OE |
| OB |
| DE |
| AB |
| 2 |
| 3 |
| k |
| m |
| 2 |
| 3 |
| 3k |
| 2m |
| 9k |
| 4m |
| 9k |
| 4m |
| k |
| m |
| 5k |
| 4m |
| 1 |
| 2 |
| 1 |
| 2 |
| 5k |
| 4m |
| 2 |
| 3 |
解答:
解:延长AC交x轴于B,作DE⊥x轴于E,
∵AC∥y轴,
∴AB∥DE,
∴
=
=
,
∵OD=2AD,
∴
=
=
,
设C(m,
),则D(
m,
),
∴AB=
=
=
,
∴AC=AB-BC=
-
=
,
则S△ACD=
AC•BE=
×
×(
m-m)=10,
解得,k=-48.
∵AC∥y轴,
∴AB∥DE,
∴
| OD |
| OA |
| OE |
| OB |
| DE |
| AB |
∵OD=2AD,
∴
| OE |
| OB |
| DE |
| AB |
| 2 |
| 3 |
设C(m,
| k |
| m |
| 2 |
| 3 |
| 3k |
| 2m |
∴AB=
| DE•OB |
| OE |
| ||
-
|
| 9k |
| 4m |
∴AC=AB-BC=
| 9k |
| 4m |
| k |
| m |
| 5k |
| 4m |
则S△ACD=
| 1 |
| 2 |
| 1 |
| 2 |
| 5k |
| 4m |
| 2 |
| 3 |
解得,k=-48.
点评:本题考查了反比例函数和一次函数的交点问题,根据平行线的性质结合反比例函数图象上点的坐标特征求得AB、AC是解题的关键.
练习册系列答案
相关题目
| A、25° | B、50° |
| C、30° | D、65° |