题目内容

如图,点A的坐标为(8,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为(  )
A、2B、3
C、4D、PB的长度随点B的运动而变化
考点:全等三角形的判定与性质,坐标与图形性质
专题:
分析:作EN⊥y轴于N,求出∠NBE=∠BAO,证△ABO≌△BEN,求出∠OBF=∠FBP=∠BNE=90°,证△BFP≌△NEP,推出BP=NP,即可得出答案.
解答:解:如图,作EN⊥y轴于N,
∵∠ENB=∠BOA=∠ABE=90°,
∴∠OBA+∠NBE=90°,∠OBA+∠OAB=90°,
∴∠NBE=∠BAO,
在△ABO和△BEN中,
∠AOB=∠BNE
∠BAO=∠NBE
AB=BE

∴△ABO≌△BEN(AAS),
∴OB=NE=BF,
∵∠OBF=∠FBP=∠BNE=90°,
在△BFP和△NEP中,
∠FPB=∠EPN
∠FBP=∠ENP
BF=NE

∴△BFP≌△NEP(AAS),
∴BP=NP,
又∵点A的坐标为(8,0),
∴OA=BN=8,
∴BP=NP=4,
故选:C.
点评:本题考查了全等三角形的性质和判定,坐标与图形性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,有一定的难度,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网