题目内容

一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.

15﹣5. 【解析】 试题分析:过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案. 【解析】 过点B作BM⊥FD于点M, 在△ACB中,∠ACB=90°,∠A=60°,AC=10, ∴∠ABC=30°,BC=AC×tan60°=10, ∵AB∥CF, ∴BM=BC×sin30°=10×=5, ...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网