题目内容
如图,∠AOB=60°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是 .
求图中阴影部分的面积。(单位:厘米)(6分)
(12分)商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件商品每降价1元,商场平均每天可多售出2件。设每件商品降价x元。据此规律,请回答:
(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
在菱形ABCD中,对角线AC长为3cm,∠ABC=60°,则菱形ABCD的周长为( ).
A.6cm B.12cm C.12cm D.24cm
(本题8分)如图,已知矩形ABCD,点E为BC的中点,将△ABE沿直线AE折叠,点B落在B′点处,连接B′C.
(1)求证:AE∥B′C;
(2)若AB=4,BC=6,求线段B′C的长.
分解因式:x2+x=___________.
如果x=-3是一元二次方程ax2=c的一个根,那么该方程另一个根是( )
A.3 B.-3 C.0 D.1
如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是 .(只需填一个即可)
作图题(本小题满分8分)
请将下图中的“小鱼”向左平移5格。