题目内容
8.已知|a|=6,|b|=5,|c|=4,且a<b<0<c,求a+b+c的值.分析 根据绝对值的性质求出a、b、c的值,根据有理数的加法运算法则计算即可.
解答 解:∵|a|=6,|b|=5,a<b<0,
∴a=-6,b=-5,
∵|c|=4,0<c,
∴c=4,
a+b+c=-6-5+4=-7.
点评 本题考查的是绝对值的性质和有理数的加法,掌握一个正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数和有理数的加法法则是解题的关键.
练习册系列答案
相关题目
16.下列各式中正确的是( )
| A. | -(-2)>-1 | B. | |-0.2|=-0.2 | C. | |-5|<0 | D. | -$\frac{3}{2}$>-$\frac{1}{2}$ |
20.先阅读下列一段文字,然后解答问题:
某运输部门规定:办理托运,当一种物品的重量不超过16千克时,需付基础费30元和保险费a元:为限制过重物品的托运,当一件物品超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x千克.
(1)当x≤16时,支付费用为a+30元(用含a的代数式表示);当x≥16时,支付费用为a+30+(x-16)b元(用含x和a、b的代数式表示);
(2)甲、乙两人各托运一件物晶,物品重量和支付费用如下表所示
①试根据以上提供的信息确定a,b的值.
②试问在物品可拆分的情况下,用不超过105元的费用能否托运50千克物品?若能,请设计出其中一种托运方案,并求出托运费用;若不能,请说明理由.
某运输部门规定:办理托运,当一种物品的重量不超过16千克时,需付基础费30元和保险费a元:为限制过重物品的托运,当一件物品超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x千克.
(1)当x≤16时,支付费用为a+30元(用含a的代数式表示);当x≥16时,支付费用为a+30+(x-16)b元(用含x和a、b的代数式表示);
(2)甲、乙两人各托运一件物晶,物品重量和支付费用如下表所示
| 物品重量(千克) | 支付费用(元) |
| 18 | 38 |
| 25 | 53 |
②试问在物品可拆分的情况下,用不超过105元的费用能否托运50千克物品?若能,请设计出其中一种托运方案,并求出托运费用;若不能,请说明理由.
17.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,设甲种手机减少x部,求y的解析式.
(3)该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
| 甲 | 乙 | |
| 进价(元/部) | 4000 | 2500 |
| 售价(元/部) | 4300 | 3000 |
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,设甲种手机减少x部,求y的解析式.
(3)该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.