题目内容

13.阅读填空:对于方程组$\left\{\begin{array}{l}{4(x+y)-3(x-y)=14}\\{\frac{x+y}{2}+\frac{x-y}{3}=6}\end{array}\right.$,不妨设$\frac{x+y}{2}=u,\frac{x-y}{3}=v$,则原方程组变为以u,v为未知数的方程组$\left\{\begin{array}{l}{8u-9v=14}\\{u+v=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{u=4}\\{v=2}\end{array}\right.$,从而原方程组的解是$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$,这种解法称之为“换元法”

分析 根据设出的u与v,将方程组变形,求出解确定出u与v的值,进而求出x与y的值.

解答 解:阅读填空:对于方程组$\left\{\begin{array}{l}{4(x+y)-3(x-y)=14}\\{\frac{x+y}{2}+\frac{x-y}{3}=6}\end{array}\right.$,
不妨设$\frac{x+y}{2}$=u,$\frac{x-y}{3}$=v,则原方程组变为以u,v为未知数的方程组$\left\{\begin{array}{l}{8u-9v=14}\\{u+v=6}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{u=4}\\{v=2}\end{array}\right.$,从而原方程组的解是$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$,这种解法称之为“换元法”.
故答案为:$\left\{\begin{array}{l}{8u-9v=14}\\{u+v=6}\end{array}\right.$;$\left\{\begin{array}{l}{u=4}\\{v=2}\end{array}\right.$;$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$

点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网