题目内容

如图1,抛物线C1:y=x2+bx+c的顶点为A(1,-
13
4
)
,与y轴的负半轴交于B点.
(1)求抛物线C1的解析式及B点的坐标;
(2)如图2,将抛物线C1向下平移与直线AB相交于C、D两点,若BC+AD=AB,求平移后的抛物线C2的解析式;
(3)如图3在(2)中,设抛物线C2与y轴交于G点,顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNG=90°,请你分析实数m的变化范围.
考点:二次函数综合题
专题:综合题,压轴题
分析:(1)根据二次函数的顶点坐标为(-
b
2a
4ac-b2
4a
),然后代入即可求出b和c的值,令x=0,求出此时的y,即是点B的纵坐标;
(2)过A、B两点分别作x轴、y轴的垂线,交于H点,过C、D两点分别作x轴、y轴的垂线,交于Q点,由(1)有直线AB的解析式为:y=-x-
9
4
,设C(m,-m-
9
4
),则D(m+2,-m-
17
4
),代入抛物线C2的解析式为y=x2-2x+t,求出即可;
(3)当M点在F点的右边时,作EM⊥GE交x轴于M点,当M点在F点的左边时,作GH⊥EF于H点,则△MNF∽△NGH,利用相似三角形的性质以及一元二次方程根的判别式得出m的取值范围.
解答:解:(1)由题意得:-
b
2a
=1,
4ac-b2
4a
=-
13
4
,其中a=1,
解得:b=-2,c=-
9
4

∴抛物线C1的解析式:y=x2-2x-
9
4

令x=0,y=-
9
4

∴B点的坐标为(0,-
9
4
);

(2)过A、B两点分别作x轴、y轴的垂线,交于H点,过C、D两点分别作x轴、y轴的垂线,交于Q点,
∵BC+AD=AB,∴CD=2AB,
∵AH=BH=1,∴CQ=DQ=2.
设直线AB解析式为:y=kx+b,
由(1)中A,B两点坐标得出:
k+b=-
13
4
b=-
9
4

解得:
k=-1
b=-
9
4

则直线AB的解析式为:y=-x-
9
4

设C(m,-m-
9
4
),则D(m+2,-m-
17
4
),
设抛物线C2的解析式为y=x2-2x+t,
∵C、D两点在抛物线C2上,
则有:
-m-
9
4
=m2-2m+t
-m-
17
4
=(m+2)2-2(m+2)+t

解得:
m=-
1
2
t=-3

∴抛物线C2的解析式为y=x2-2x-3;

(3)由(2)有OF=1,FE=4,OG=3,∴∠GEF=45°,
当M点在F点的右边时,
作EM⊥GE交x轴于M点,
则∠FEM=45°,
∴FM=EF=4,
∴OM=5,
∴m≤5;
当M点在F点的左边时,作GH⊥EF于H点,
∵∠MNG=90°,
则△MNF∽△NGH,
MF
NH
=
FN
GH

设FN=n,则NH=3-n,
1-m
3-n
=
n
1
,得:n2-3n-m+1=0,
∴△=(-3)2-4(-m+1)≥0,
解得:m≥-
5
4

∴m的变化范围是-
5
4
≤m≤5
点评:本题考查了二次函数的综合运用以及相似三角形的判定与性质,根据已知结合图象进行分类讨论得出是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网