题目内容
如图,已知点A的坐标是(﹣1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.
![]()
练习册系列答案
相关题目
在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:
成绩/m | 1.50 | 1.55 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 |
人数/人 | 1 | 2 | 2 | 2 | 3 | 4 | 1 |
则这些运动员成绩的众数和中位数分别是( )
A. 2和1.65 B. 2和1.70 C. 1.75和1.65 D. 1.75和1.70