题目内容
求证:
(1)△ABP≌△CBP;
(2)AP=EF.
分析:(1)由四边形ABCD是正方形,可得AB=CB,∠ABD=∠CBD=
∠ABC,然后根据SAS即可判定△ABP≌△CBP;
(2)由(1),可得AP=CP,又由PE⊥DC,PF⊥BC,易证得四边形PECF是矩形,根据矩形的对角线相等,即可得PC=EF,继而证得AP=EF.
| 1 |
| 2 |
(2)由(1),可得AP=CP,又由PE⊥DC,PF⊥BC,易证得四边形PECF是矩形,根据矩形的对角线相等,即可得PC=EF,继而证得AP=EF.
解答:证明:(1)∵四边形ABCD是正方形,
∴AB=CB,∠ABD=∠CBD=
∠ABC,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS);
(2)∵△ABP≌△CBP,
∴AP=PC,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵PE⊥DC,PF⊥BC,
∴∠PEC=∠PFC=90°,
∴四边形PECF是矩形,
∴PC=EF,
∴AP=EF.
∴AB=CB,∠ABD=∠CBD=
| 1 |
| 2 |
在△ABP和△CBP中,
|
∴△ABP≌△CBP(SAS);
(2)∵△ABP≌△CBP,
∴AP=PC,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵PE⊥DC,PF⊥BC,
∴∠PEC=∠PFC=90°,
∴四边形PECF是矩形,
∴PC=EF,
∴AP=EF.
点评:此题考查了正方形的性质、矩形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目