题目内容

17.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡行走20m,到达坡顶D处,已知斜坡的坡角为15°.(sin15°=0.259,cos15°=0.966,tan15°=0.268,以下计算结果精确到0.1m)
(1)求小华此时与地面的垂直距离CD的值;
(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.

分析 (1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;
(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义求得AF得出答案即可.

解答 解:(1)在Rt△BCD中,∠CBD=15°,BD=20,
∴CD=BD•sin15°,
∴CD=5.2(m).
答:小华与地面的垂直距离CD的值是5.2m;
(2)在Rt△AFE中,
∵∠AEF=45°,
∴AF=EF=BC,
由(1)知,BC=BD•cos15°≈19.3(m),
∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).
答:楼房AB的高度是26.1m.

点评 本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解题的关键是构造直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网