题目内容
已知边长为a的正方形的面积为8,则下列说法中,错误的是( )
A. a是无理数 B. a是方程x2﹣8=0的一个解
C. a是8的算术平方根 D. a满足不等式组
D.
已知圆锥的高为4cm,底面半径为3cm,则它的表面积为__________cm2
(结果保留π) .
已知关于x的方程x2-(k+2)x+2k=0.
(1)求证:k取任何实数值,方程总有实数根;
(2)若等腰△ABC的一边长a=3,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.
已知a:b:c=2:3:4,且2a+3b-2c=10,求a-2b+3c的值.
如图,小李在一次高尔夫球选拔赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8米.
(1)求直线OA的解析式;
(2)求出球的飞行路线所在抛物线的解析式;
(3)判断小李这一杆能否把高尔夫球从O点直接打入球洞A点.
让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( )
A. B. C. D.
如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为 .
如图,已知A、B是反比例函数(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为( )
已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.
(1)写出数轴上点B,P所表示的数(可以用含t的代数式表示);
(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距2个单位长度?
(3)若M为AQ的中点,N为BP的中点.当点P在线段AB上运动过程中,探索线段MN与线段PQ的数量关系.