题目内容
已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.(8分)
![]()
∠PBD=53°,∠BPD=64°,∠PDB=63°
【解析】
试题分析:将△APC绕点A顺时针旋转60°得△AQB,则△AQB≌△APC
∴BQ=CP,AQ=AP,
∵∠1+∠3=60°,
∴△APQ是等边三角形,
∴QP=AP,
∴△QBP就是以AP,BP,CP三边为边的三角形,
∵∠APB=113°,
∴∠6=∠APB﹣∠5=53°,
∵∠AQB=∠APC=123°,
∴∠7=∠AQB﹣∠4=63°,
∴∠QBP=180°﹣∠6﹣∠7=64°,
∴以AP,BP,CP为边的三角形的三内角的度数分别为64°,63°,53°.
![]()
考点:等边三角形的判定与性质
练习册系列答案
相关题目