题目内容
3.把-$\sqrt{72{x}^{2}{y}^{3}z}$(x<0,y>0)化为最简二次根式.分析 根据二次根式的性质化简,即可解答.
解答 解:-$\sqrt{72{x}^{2}{y}^{3}z}$
=-$\sqrt{36×2•{x}^{2}•{y}^{2}yz}$
=-6•(-x)y$\sqrt{2yz}$
=6xy$\sqrt{2yz}$.
点评 本题考查了二次根式的性质,解决本题的关键是熟记二次根式的性质.
练习册系列答案
相关题目
13.一次函数y=2x+1的图象不经过( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
8.沿圆锥的母线剪开展平得到的侧面展开图是( )
| A. | 三角形 | B. | 长方形 | C. | 圆 | D. | 扇形 |
12.已知x2+3x+4=6,则3x2+9x-2的值为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
3.在平面直角坐标系中,抛物线y=-$\frac{1}{2}$x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点M为顶点,连接OM.若y与x的部分对应值如表所示:
(1)求此抛物线的解析式;
(2)如图1,C为线段OM上一点,过C作x轴的平行线交线段BM于点D,以CD为边向上作正方形CDEF,CF、DE分别交此抛物线于P、Q两点,是否存在这样的点C,使得正方形CDEF的面积和周长恰好被直线PQ平分?若存在,求C点的坐标;若不存在,请说明理由;
(3)如图2,平移此抛物线使其顶点为坐标原点,P(0,-1)为y轴上一点,E为抛物线上y轴左侧的一个动点,从E点发出的光线沿EP方向经过y轴上反射后与此抛物线交于另一点F,则当E点位置变化时,直线EF是否经过某个定点?如果是,请求出此定点的坐标,不是则说明理由.
| x | … | -1 | 0 | 3 | … |
| y | … | 0 | $\frac{3}{2}$ | 0 | … |
(2)如图1,C为线段OM上一点,过C作x轴的平行线交线段BM于点D,以CD为边向上作正方形CDEF,CF、DE分别交此抛物线于P、Q两点,是否存在这样的点C,使得正方形CDEF的面积和周长恰好被直线PQ平分?若存在,求C点的坐标;若不存在,请说明理由;
(3)如图2,平移此抛物线使其顶点为坐标原点,P(0,-1)为y轴上一点,E为抛物线上y轴左侧的一个动点,从E点发出的光线沿EP方向经过y轴上反射后与此抛物线交于另一点F,则当E点位置变化时,直线EF是否经过某个定点?如果是,请求出此定点的坐标,不是则说明理由.