ÌâÄ¿ÄÚÈÝ

19£®Èçͼ1£¬ÒÑÖªÖ±Ïßl£¬y=2x-2·Ö±ðÓëxÖá¡¢yÖá½»ÓÚµãA¡¢BÁ½µã£¬CΪlÔÚÒ»ÏóÏÞÄÚµÄÒ»µã£¬ÇÒAC=2$\sqrt{5}$£¬Å×ÎïÏßy=ax2+bx-8¹ýA¡¢CÁ½µã£¬ÇÒÓëxÖáµÄÁíÒ»½»µãΪD£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èçͼ2£¬ÈôÅ×ÎïÏßy=ax2+bx-8µÄ¶¥µãΪE£¬PΪֱÏßACÉϵÄÒ»¶¯µã£¬µ±|PD-PE|Öµ×î´óʱ£¬Çó´ËʱµãPµÄ×ø±ê¼°|PD-PE|µÄ×î´óÖµ£»
£¨3£©Èçͼ3£¬ÈôµãMΪxÖáÉÏÒ»µã£¬µãNÎªÆ½ÃæÄÚÒ»µã£¬ÇÒÂú×ãÒÔµãB¡¢C¡¢M¡¢NΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬ÇëÖ±½Óд³öµãNµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃAµã×ø±ê£¬¸ù¾ÝÁ½µã¼äµÄ¾àÀ룬¿ÉµÃCµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃ´ð°¸£»
£¨2£©Èçͼ2ÖУ¬×÷D¹ØÓÚÖ±ÏßACµÄ¶Ô³ÆµãD¡ä£¬Á¬½ÓDD¡ä½»ACÓÚH£¬Á¬½ÓDEÓÉ´ËDE½»CCÓÚP£¬´Ëʱ|PD-EP|µÄÖµ×î´ó£®
£¨3£©¸ù¾ÝÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬¿ÉµÃMµã×ø±ê£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÉèCµã×ø±êΪ£¨m£¬2m-2£©£¬
µ±y=0ʱ£¬2x-2=0£¬½âµÃx=1£¬¼´A£¨1£¬0£©£¬
ÓÉAC=2$\sqrt{5}$£¬µÃ
£¨m-1£©2+£¨2m-2£©2=£¨2$\sqrt{5}$£©2£¬
½âµÃm=3£¬m=-1£¨Éᣩ£¬2m-2=4£¬¼´C£¨3£¬4£©£¬
½«A£¬Cµã×ø±ê´úÈ뺯Êý½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{9a+3b-8=4}\\{a+b-8=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-2}\\{b=10}\end{array}\right.$£¬
Å×ÎïÏߵĽâÎöʽΪy=-2x2+10x-8£»

£¨2£©Åä·½£¬µÃ
y=-2£¨x-$\frac{5}{2}$£©2+$\frac{9}{2}$
¼´E£¨$\frac{5}{2}$£¬$\frac{9}{2}$£©£®
µ±y=0ʱ£¬=-2x2+10x-8=0£¬½âµÃx=1£¨Éᣩx=4£¬¼´Dµã×ø±êΪ£¨4£¬0£©£¬
Èçͼ2ÖУ¬×÷D¹ØÓÚÖ±ÏßACµÄ¶Ô³ÆµãD¡ä£¬Á¬½ÓDD¡ä½»ACÓÚH£¬Á¬½ÓDEÓÉ´ËDE½»CCÓÚP£¬´Ëʱ|PD-EP|µÄÖµ×î´ó£®

¡ßÖ±ÏßDD¡äµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£¬
ÓÉ$\left\{\begin{array}{l}{y=-\frac{1}{2}x+2}\\{y=2x-2}\end{array}\right.$¿ÉµÃH£¨$\frac{8}{5}$£¬$\frac{6}{5}$£©£¬
¡àD¡ä£¨-$\frac{4}{5}$£¬$\frac{12}{5}$£©£¬
¡àÖ±ÏßD¡äEµÄ½âÎöʽΪy=$\frac{7}{11}$x+$\frac{32}{11}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{7}{11}x+\frac{32}{11}}\\{y=2x-2}\end{array}\right.$¿ÉµÃP£¨$\frac{18}{5}$£¬$\frac{26}{5}$£©£¬
´Ëʱ|PD-PE|µÄ×î´óÖµ=D¡äE=$\sqrt{£¨\frac{18}{5}-\frac{5}{2}£©^{2}-£¨\frac{26}{5}-\frac{9}{2}£©^{2}}$=$\frac{\sqrt{170}}{10}$£®

£¨3£©Èçͼ1
£¬
µ±y=0ʱ£¬2x-2=0£¬½âµÃx=1£¬¼´D£¨1£¬0£©£¬
¡ß¡Ï1+¡Ï2=90¡ã£¬¡Ï2+¡Ï3=90¡ã£¬
¡à¡Ï1=¡Ï3£¬
ÓÖ¡ß¡ÏBOD=¡ÏMOB£¬
¡à¡÷BOD¡×¡÷MOB£¬
¡à$\frac{MO}{BO}$=$\frac{BO}{OD}$£¬
½âµÃMO=4£¬¼´M£¨-4£¬0£©£¬
ÓɶԽÇÏ߯½·Ö£¬µÃ
$\frac{{x}_{N}+{x}_{B}}{2}$=$\frac{{x}_{M}+{x}_{C}}{2}$£¬¼´$\frac{{x}_{N}+0}{2}$=$\frac{-4+3}{2}$£¬¼´xN=-1£¬
$\frac{{y}_{N}+{y}_{B}}{2}$=$\frac{{y}_{M}+{y}_{C}}{2}$£¬¼´$\frac{{y}_{N}+£¨-2£©}{2}$=$\frac{0+4}{2}$£¬¼´yN=6£¬
Nµã×ø±êΪ£¨-1£¬6£©£»
Èçͼ2£¬
×÷CE¡ÍOMÓÚE£¬OE=3£¬CE=4£®
µ±y=0ʱ£¬2x-2=0£¬½âµÃx=1£¬¼´D£¨1£¬0£©£¬
DE=OE-OD=3-1=2£®
¡ß¡Ï1+¡Ï2=90¡ã£¬¡Ï2+¡Ï3=90¡ã£¬
¡à¡Ï1=¡Ï3£¬
ÓÖ¡ß¡ÏDEC=¡ÏCEM£¬
¡à¡÷DEC¡×¡÷CEM£¬
¡à$\frac{DE}{CE}$=$\frac{CE}{EM}$£¬
½âµÃME=8£¬¼´M£¨11£¬0£©£¬
ÓɾØÐεĶԽÇÏ߯½·Ö£¬µÃ
$\frac{{x}_{N}+{x}_{B}}{2}$=$\frac{{x}_{M}+{x}_{C}}{2}$£¬¼´$\frac{{x}_{N}+{x}_{C}}{2}$=$\frac{{x}_{B}+{x}_{M}}{2}$£¬$\frac{{x}_{N}+3}{2}$=$\frac{0+11}{2}$£¬¼´xN=8£¬
$\frac{{y}_{N}+{y}_{C}}{2}$=$\frac{{y}_{B}+{y}_{M}}{2}$£¬¼´$\frac{{y}_{N}+4}{2}$=$\frac{-2+0}{2}$£¬¼´yN=-6£¬
Nµã×ø±êΪ£¨8£¬-6£©£®
×ÛÉÏËùÊö£ºÈôµãMΪxÖáÉÏÒ»µã£¬µãNÎªÆ½ÃæÄÚÒ»µã£¬ÇÒÂú×ãÒÔµãB¡¢C¡¢M¡¢NΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬µãNµÄ×ø±ê£¨8£¬-6£©»ò£¨-1£¬6£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬½â£¨1£©µÄ¹Ø¼üÊÇÀûÓÃÁ½µãÖ®¼äµÄ¾àÀëµÃ³öCµã×ø±ê£¬ÓÖÀûÓôý¶¨ÏµÊý·¨£»½â£¨2£©µÄ¹Ø¼üÊÇÁ½±ßÖ®²îСÓÚµÚÈý±ßµÃ³öPÊÇDEÓëACµÄ½»µã£»½â£¨3£©µÄ¹Ø¼üÊÇÀûÓÃÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖʵóöMµãµÄ×ø±ê£¬ÓÖÀûÓÃÁ˾ØÐεÄÐÔÖÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø